

05. Robust and Ethical Experiments

Blase Ur, April 10th, 2017
CMSC 23210 / 33210

Security, Usability, & Privacy
Education & Research

Today's class

- Recap of (some) HCI methods
- Designing robust & ethical studies

HCI Experimental Methods

Human-Computer Interaction (HCI)

- You are not the user! You know too much!
- Think about the user throughout design
- Involve the user

What is usable?

- Intuitive / obvious
- Efficient
- Learnable
- Memorable
- Few errors
- Not annoying
- Status transparent

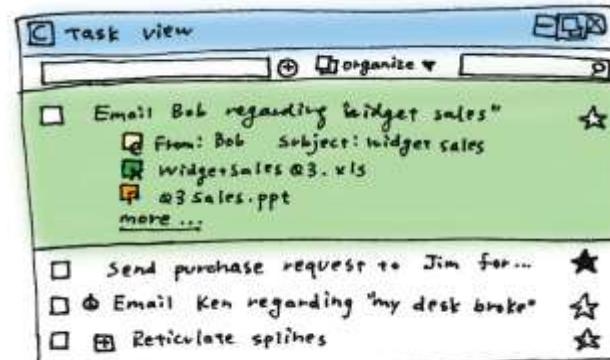
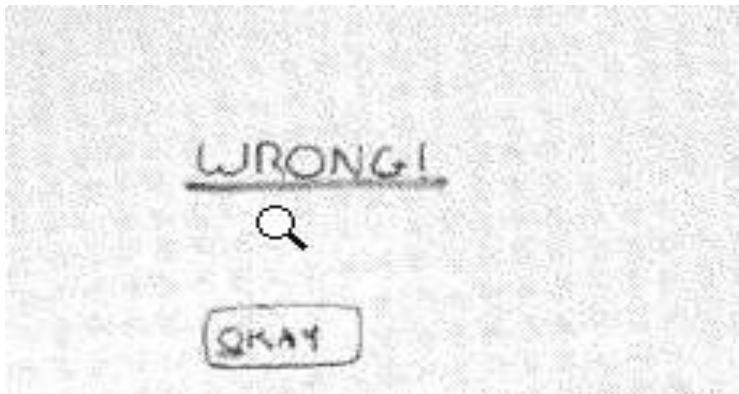
THE AUTHOR OF THE WINDOWS FILE COPY DIALOG VISITS SOME FRIENDS.

Image from <http://www.xkcd.com>

Determine use cases and goals

- What are the concrete tasks users should be able to accomplish?
 - Based on understanding of users!
- Set realistic metrics

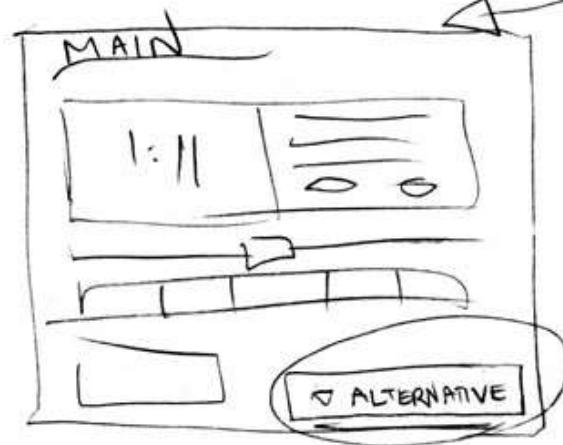
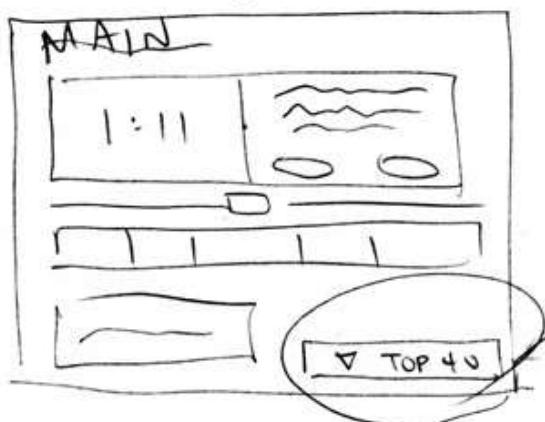
Example: personas

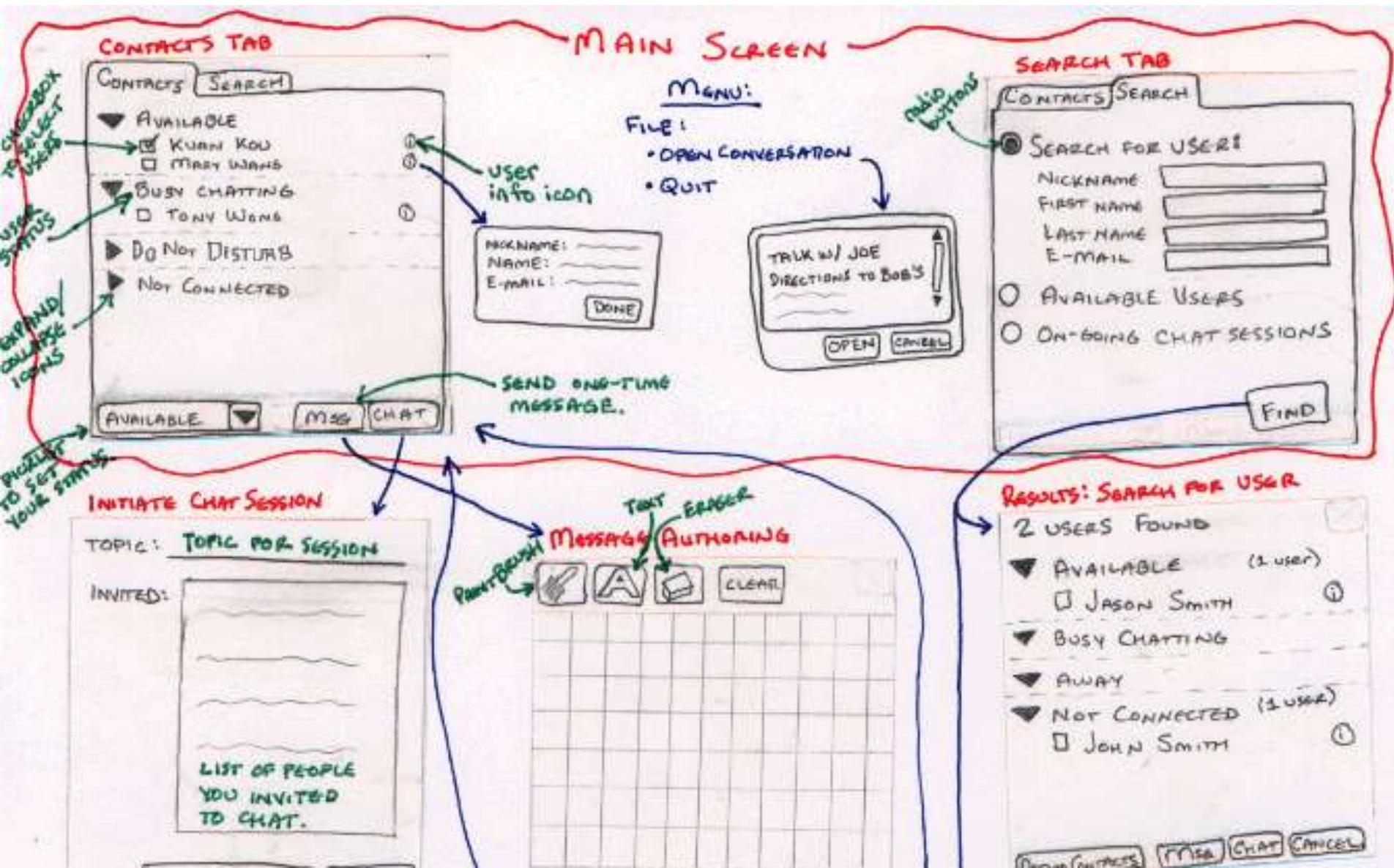


Name:	Patricia
Age:	31
Occupation:	Sales Manager, IKEA Store
Hobbies:	Painting Fitness/biking Taking son Devon to the park
Likes:	Emailing friends & family Surprises for her husband Talking on cell phone with friends Top 40 radio stations Eating Thai food Going to sleep late
Dislikes:	Slow service at checkout lines Smokers

Example: paper prototypes

- Don't overthink. Just make it.
- Draw a frame on a piece of paper
- Sketch anything that appears on a card
- Make all menus, etc.
- Redesign based on feedback
- “Think aloud”

Iterative prototyping is crucial!



High-fidelity, “Wizard of Oz,” low-fidelity


Example: low-fidelity paper prototype

SCENARIO 1

"I want to listen to alternative music"

Example: paper prototype

Example: think aloud

- Download and install software that lets you encrypt your email
 - “Think aloud” of whatever’s on your mind
 - Give them an example
- Additional things you can ask:
 - What are you thinking now?
 - What do you expect to happen if you do X?
 - How did you decide to do that?

Research Studies and Methods

Research studies: purpose and goals

- What are you hoping to learn?
- What are your hypotheses?
 - Often listed explicitly in a paper
- What are your metrics for success?
 - More secure, quicker to use, more fun, etc.
- What are you comparing to?
- What data might be helpful?

Broad types of studies

- Descriptive study
- Relational study
- Experimental study
- Formative (initial) vs. summative (validate)

STAND BACK

**I'M GOING TO TRY
SCIENCE**

Quantitative vs. Qualitative

- Quantitative: you have numbers (timing data, ratings of awesomeness)
- Qualitative: you have non-numerical data (thoughts, opinions, types of errors)

Types of studies (1)

- What people want/think/do overall:
 - Surveys
 - Interviews
 - Focus groups
- What people want/think in context:
 - Contextual inquiry (interviews)
 - Diary study (prompt people)
 - Observations in the field

Types of studies (2)

- Expert evaluation of usability:
 - Cognitive walkthrough
 - Heuristic evaluation
- Usability test:
 - Laboratory (“think aloud”)
 - Online study
 - Log analysis

Types of studies (3)

- Controlled experiments to test causation
- Varying different conditions
 - Full-factorial design or not
 - Independent and dependent variables
- Many methods apply (e.g., surveys can be designed to test causation)
 - Role-playing studies
 - Field studies

Study designs

- Within subjects
 - Every participant tests everything
 - Crucial to randomize order! (learning effect)
 - Fewer participants
- Between subjects
 - Each participant tests 1 version of the system
 - You compare these groups
 - Groups should be similar (verify!)
 - Still randomize!

Data to collect during experiments

- Actions and decisions
- Performance (time, success rate, errors)
- Opinions and attitudes (self-reported)
- Audio recording, screen capture, video, mouse movements, keystrokes

Even more data to collect

- Demographics
 - Age, gender, technical background, income, education, occupation, location, ability, first language, privacy attitudes, etc.
- Open-ended questions
- Preferences and attitudes (Likert scale)

Please respond to the following statements:

**This user interface was difficult to understand*

1- Strongly disagree 2- Disagree 3- Neutral 4- Agree 5- Strongly agree

**This tool was fun to use*

1- Strongly disagree 2- Disagree 3- Neutral 4- Agree 5- Strongly agree

Logistics for a study

- How many participants?
 - Statistical power
 - Time, budget, participants' time
- What kind of participants?
 - Skills, background, interests
 - Their motivations
 - Often not a representative sample
- What do you need to build, if anything?
 - Prototype fidelity

Hypothesis testing

- **Causation** (X causes Y)
 - vs. **correlation** (X is related to Y)
- Develop a hypothesis
 - Assign to conditions (include a **control**)
 - Terminology: “Condition” = “Treatment”
- H_0 (null hypothesis): there is no effect
- H_A or H_1 (alternative hypothesis): there is an effect

Hypothesis testing variables

- Independent variables: the thing(s) you assign / vary
- Dependent variables: the thing(s) you measure for evidence of an effect
- Co-variates: other aspects of a participant that might explain some of the effect (e.g., age, technical expertise, etc.)

P values and statistics

- Much of hypothesis testing involves calculating an appropriate statistic
- p value: probability of observing an effect at least as extreme as observed assuming the null hypothesis is true (i.e., no effect)
- α (alpha): cutoff for rejecting H_0
 - Treat this as a binary decision
 - Often $\alpha = .05$ in usable security

Is testing for significance enough?

- No! Consider:
 - Effect size (magnitude of the effect of the manipulation)
 - Power (long-term probability of rejecting H_0 if there really is a difference)
- Type 1 error: wrongly reject H_0 even if there is no effect (α)
- Type 2 error: wrongly fail to reject H_0 even if there is an effect (β)

Validity

- To what degree are we confident that X causes Y (**internally valid**)?
- To what degree can we generalize about our results (**externally valid**)?
 - What biases does our sample introduce?
- Is this study **ecologically valid**?
 - Does it mirror real-life conditions and context?
- Balancing all of these is hard!

What we conclude from studies

- It's very rare that we conclude something like "for all humans there is an X% effect of Y" or "Z% of people care about privacy"
 - Be clear what population you have sampled
- We often use proxies in measurement

What we conclude long-term

- **Repeatability:** findings consistent with same researchers and same infrastructure
- **Reproducibility:** findings consistent with different researchers and different (comparable) infrastructure
- Sadly, few studies are replicated
 - Bias against successful replication in peer review
 - (Also) bias against publishing negative results

Some potential confounds (1/3)

- Measurement accuracy / resolution
- Differences caused by different experimental platforms and conditions
- Order of recruiting matters
 - Round-robin (123123123, etc.), Latin squares
- Time of day for recruiting matters
- Failing to account for study dropout or non-participation (very subtle!)

Some potential confounds (2/3)

- Learning effect
 - Randomize order of tasks
 - Consider learning effect as a covariate
- Different instructions for different participants
- Biases of recruitment / representativeness
- Self-report biases
 - Don't ask people to rate expertise

Some potential confounds (3/3)

- Different demographics in conditions
- Placebo effect
 - Why you need a control condition
- Hawthorne effect (changing behavior in response to being observed)
- Participants try to please experimenter
 - I like yours better!
 - Minimize knowledge of what's being tested

Methodology sections

- Be clear and honest about what you did
 - Be honest about limitations
- Give enough detail for someone to replicate
 - Study materials as appendix if possible
 - Correctly report stats (e.g., APA guidelines)
- Release code if possible
- Release data if possible
 - Requires approval from IRB and participants

Pilot studies

- Conduct pilot studies!!!
- Check wording
- Encourage pilot participants to tell you when there is ambiguity or uncertainty
- Verify that you're getting the measurements you thought and that your software works
- Have people talk through even protocols that will be conducted remotely

An example study

- Research question: “Is UChicago the place where fun comes to die?”
- Recruiting participants: what can go wrong?
- Independent variable: assign a university
- Dependent variable: some proxy for fun
 - Hours not studying?
 - Hours not in the Reg?
 - Agreement with statement “We are having fun”

Participants, ethics, and deception

Participants (1)

- Recruit people to do something remotely (e.g., online)
- Recruit people to come to your lab
- Recruit people to let you into their “context”
- Observe people (if possible, get consent! If not possible, consider necessity of design)

Participants (2)

- What recruitment mechanisms?
 - Craigslist, flyers, participant pools, representative sample, standing on street
- How do you compensate them?
 - Ethics of paying \$0.00 vs. \$10.00 vs. \$100,000
- How do you get informed consent?
- What happens to their data?
- Prior knowledge / “what” are they?

Ethics

- How do we protect participants?
 - What risks do we introduce?
- Is there a less invasive method that would give equivalent insight?
- IRB is one arbiter of ethics; experimenters themselves are another crucial arbiter
- How do we make sure participation is voluntary throughout the experiment?

Deception

- Do we mind if participants know precisely what is being studied?
 - Sometimes, it's crucial that we observe their organic responses in context
- What “deception” or “distraction” task can we introduce?
- How do we **debrief** people at the end?

Institutional Review Board (IRB)

- Is it research? Are there human subjects?
- Full review vs. expedited vs. exempt
- Fill out and submit protocol
 - Include all study materials (e.g., surveys)
 - Include recruitment text and/or poster
 - Leave plenty of time

What to submit to an IRB

- Full consent form (use UChicago model)
- All scripts, survey questions, instructions
- Recruitment plan
- Recruitment materials
 - You can't emphasize compensation
- Information about how data will be handled
 - Password protection, encryption, etc.
 - Meetings to discuss

Social phishing (Jagatic et al., 2007)

- Use social networking sites to get information for targeted phishing
 - “In the study described here we simply harvested freely available acquaintance data by crawling social network Web sites.”
- “We launched an actual (but harmless) phishing attack targeting college students aged 18–24 years old.”

Social phishing (Jagatic et al., 2007)

- Control group: message from stranger
- Experimental group: message from a friend
- Used university's sign-on service to verify passwords phished

Ethics (Jagatic et al., 2007)

- How did they obtain consent?
- What ethical concerns are there?
 - What seemed to be done well?
 - What could have been done better?
- Who was potentially affected by the study?
- “The number of complaints made to the campus support center was also small (30 complaints, or 1.7% of the participants).”