
1

16. Usable Security for

Developers

Blase Ur, May 17th, 2017

CMSC 23210 / 33210

2

Today’s class

•Making security usable for developers

–Motivation

–Sources of security advice

–Crypto APIs

–Additional aspects

3

Developers Are Users, Too!

4

Security and human error

“Not long ago, [I] received an e-mail

purporting to be from [my] bank. It looked

perfectly legitimate, and asked [me] to verify

some information. [I] started to follow the

instructions, but then realized this might not

be such a good idea … [I] definitely should

have known better.”
-- former FBI Director Robert Mueller

5

Security and human error

6

Security and human error

•John Podesta (more precisely an aide)

receives the following:

https:// mobile.nytimes.com/2016/12/13/us/politics/russia-hack-election-dnc.html

7

Security and human error

•IT services writes back:

https:// mobile.nytimes.com/2016/12/13/us/politics/russia-hack-election-dnc.html

8

Security and human error

https:// mobile.nytimes.com/2016/12/13/us/politics/russia-hack-election-dnc.html

9

Why are users
stupid or lazy? How can we make

security more
usable?

10

Beyond end users for more impact

End Users (> 1.5 billion)

Developers (~350,000)

System Designers (Google)

ImpactAccessibility

Example: Android

11

What about software developers?

h
tt
p
s:

//
i.y

tim
g

.c
o

m
/v

i/t
Q

m
s0

3
7

U
7

2
w

/m
a
xr

e
sd

e
fa

u
lt
.jp

g

h
tt

p
:/

/
w

w
w

.s
la

te
.c

o
m/

co
n
te

n
t/
d
a
m

/s
la

te
/a

rt
ic

le
s/

te
ch

n
o
lo

g
y
/fu

tu
re

_
te

n
se

/2
0

1
6

/0
6
/1

6
0

6
1

0
_

F
T

_
B

a
rb

ie-p
ro

m
o
.jp

g
.C

R
O

P
.c

q
5

d
a

m
_

w
e
b
_

1
2

8
0

_
1
2

8
0

_
jp

e
g
.jp

gDevelopers are experts,
right?

Or not.

12

Why are

developers

stupid or lazy?
How can we
make secure
programming

easier?

13

Lessons learned: Usec for end users

•You are not your user

•Security is a secondary concern

•More is not always better

14

You are not your user

•Confusing warnings and error messages

•Too much security jargon

•Don’t assume security knowledge just

because they know how to program

•Design for usability, evaluate it explicitly

15

Security is secondary

•No one turns on their computer to do

“security”

–Functionality, time to market, maintainability, etc.

–May (appear to) conflict with security

•Attention and time are limited!

•Try: Take developer out of the loop

•Try: Persuasive design

h
tt
p
s:

//
w

w
w

.s
cr

ip
p
s
.o

rg/
s
p

a
rk

le
-a

ss
e
ts

/i
m

a
g
e

s/
m

u
lti

ta
st

ki
n

g-6
0
0

x3
7
5

.jp
g

16

More is not always better

•Too much advice is overwhelming

–Hard to roll it back

•Can’t just keep asking users

(developers) to do and remember more

stuff

h
tt
p
:/

/
b
lo

g
s.

b
a

b
yc

e
n
te

r.
co

m/w
p
-c

o
n

te
n
t/
u
p
lo

a
d
s/

2
0

1
1

/0
9

/t
o

o-
m

u
ch

-s
u

g
a

r.
jp

g

h
tt
p
s:

//
rp

se
a
w

ri
g

h
t.
fil

e
s.

w
o

rd
p
re

ss
.c

o
m/2

0
1

3
/1

0
/t
o

o
-m

u
ch

-i
n
fo

.p
n
g

17

YOU GET WHERE YOU’RE LOOKING FOR

(IEEE S&P 2016)

18

Has this happened to you?

19

That doesn’t seem right ….

•Answer suggests to trust all certs

–Many real apps [Fahl+ 2012]

•Some interviewees: pasted from internet

20

Stack Overflow considered insecure

•“Everyone knows” copy-paste from the

internet is bad for security

–Particularly for “amateur” app devs?

•Can we measure this empirically?

•How does it contrast with official docs?

•What do real devs do?

21

Online developer survey

•Sent 50k invites, collected from Play

–295 valid responses

•Strategy for help with security/permissions

•General use of programming resources

22

0 25 50 75 100

Books

Official Android docs

Search engines

Stack Overflow

Encryption

HTTPS

Permissions

General

Percent of Respondents

69% Stack overflow, 62% search engines, 27.5% official

²ƘŜǊŜ Řƻ ȅƻǳ ƭƻƻƪ ǳǇ Χ

23

Next, a lab study

•Complete four short programming tasks

–Designed to have secure/insecure solutions

•Resources constrained by condition:

–Official docs, Stack Overflow, book, free

choice

•Exit interview

•Not primed for security or privacy!

24

Skeleton app, emulator

25

Task 1: Secure networking

•Convert HTTP to HTTPS

–In presence of X.509 cert error

•Sample secure solution:

–Accept only this cert

•Sample insecure solution:

–Accept all certs

http://5zin.com/certificate-of-authenticity-template.html

http://5zin.com/certificate-of-authenticity-template.html

26

Task 2: Inter-component comms

•Given a service, limit access to only apps

from same developer

•Sample secure solution:

–Define a “signature” permission

•Sample insecure solution:

–Export publicly

27

Task 3: Secure storage

•Store user ID and password locally

•Sample secure solution:

–Private shared preference

•Sample insecure solution:

–Public on SD card

http://www.routercheck.com/administrator-password/

28

Task 4: Least permissions

•Dial a customer-support phone number

•Sample secure solution:

–Dial but don’t call

•Sample insecure solution:

–Call (extra permission)

http://wizwas.com/index.php/
2009/11/02/the-door-to-yesterday-6/

http://wizwas.com/index.php/

29

Evaluation

•Correctness: Does it compile and work?

•Security: If it works, was solution secure?

–Coded manually in predefined categories

•Self-reported sentiment

–Security thinking

–Correctness and usefulness of resources

30

Recruitment

•In/around 3 universities, U.S. and

Germany

–Email, flyers, craigslist, developer forums

•1+ Android course or 1+ yrs pro

•Pass basic Android knowledge questions

31

Participants

•54 total

•13 or 14 per condition

•12 U.S., 42 Germany

•Ages 18-40; median 25

•46 men, 8 women

•14 professional, 40 non-professional

32

Demographics: lab vs. online

Many similarities; Lab had more formal education

33

Resource was easy to use

Free choice was easiest; book was worst

34

Resource was correct

•Books, official docs considered most

correct

Books, official docs considered most correct

35

Security thinking

•Observed via think-aloud:

–16% thought about it

–5% said they ignored it for study / time

•Self-reported: 60% thought about it

•No significant difference in conditions

36

Functional correctness

•SO (67%) and Book (66%) performed best

•Official (40%) performed worst

–Significantly worse than SO

38

But what about security?

Percent of functional participants

SO worst (51%), Official best (86%) (significant)

40

Professionals vs. students

•More functional

•But not significantly more secure!

41

Lookup behavior

•Official: scrolling, clicking internal links

•Stack Overflow: many search resets

•Free choice:

–Everyone used official, all but one used SO

–One picked up a book!

–Results closest to SO

42

A closer look at Stack Overflow

•Collected via browser history

•149 unique pages, 41 relevant

•20 with code snippets

–7 only secure, 10 only insecure, 3 both

–3 insecure have warnings

43

So now what?

•If you want functional, secure code:

•Cut off the internet, give your devs a book!

45

Comparing Crypto APIs

46

•Developers must pick:

–algorithm

–mode of operation

–key size, etc.

•Challenging, error prone (ICSE’16)

•Alternatives claim to be more usable

–libsodium, keyczar, cryptography.io

•Is this really true?

Getting crypto right is hard

47

•Short python tasks, secure/insecure solutions

–Symmetric: key gen./storage, encrypt/decrypt

–Asymmetric: also certification validation

•One of 5 libraries:

–PyCrypto, M2Crypto, cryptography.io, keyczar, PyNacl

•Exit survey

Online developer study

48
Not all libs support all tasks well

49

Skeleton code, online code editor

50

•Correctness: Runs without errors, “works”

•Security: Manually coded

–Predefined categories, 2 independent coders

•Self-report

–Security thinking

–System Usability Scale (SUS)

–New API scale we designed

•Primarily analyzed w/ multiple regression

Evaluation

51

Recruitment via Github

•Scraped committers to 100k Python repos

•Invited random 50k of these

•Final, “valid” sample: 256

–208 professionals

–198 w/ no security background

–1571 who consented; many dropped out

52
Many similarities; Participants slightly more active

Invited vs. participated

53

Functionality by library

Keyczar, m2crypto worst; c&p helps (significant)

54

Security (among functional)

άǎƛƳǇƭƛŦƛŜŘέ ƭƛōǎ ŀǊŜ Ƴƻǎǘ ǎŜŎǳǊŜΤ
asymmetric more secure than symmetric

55

Self-reported data

•Believed secure but weren’t: 20% of tasks!

–Not different by library

•SUS: Nothing better than mediocre

–Most disliked: keyczar, m2crypto, asymm

–Very similar to functionality results

•From our scale: Documentation is key!

–Keyczar: “Your documentation is bad and you
should feel bad.”

56

Participant background

•Experience level:

–High if python is your job, or programming in

python > 5 years

–Did not matter on any metric

•Security background:

–Almost mattered to security results

–Helps with usability reports

•Library experience: maybe helps usability

57

Takeaways

•Implementing crypto is (still) hard

•Simplified APIs do promote security

–Sort of!

•Documentation, full-featured-ness are

key!

58

What else can go wrong?

59

Example from today’s readings

60

Other Developer Concerns

•AWS (or other) access tokens

–Don’t commit them to GitHub

•Credentials for MySQL, etc.

–Don’t leave them in web-accessible

directories (in case PHP crashes)

–Don’t let people pick them

–Don’t let them be spit out by verbose error

messages

61

Other Developer Concerns

•Don’t keep legacy databases around

–bcrypt vs. MD5

•Don’t allow password access for SSH

•Don’t allow remote access to your

database

•Don’t use outdated Javascript libraries for

your website

62

Configuring HTTPS

63

What can go wrong?

•Hacking Team was a consulting company

that contracted with governments

•Many operational security errors

•Sys admin’s password: P4ssword

http://pastebin.com/raw/0SNSvyjJ

