08. The Internet of Things and Qualitative Studies

Blase Ur and Mainack Mondal
April 18th, 2018
CMSC 23210 / 33210

The University of Chicago | Security, Usability, & Privacy Education & Research
Transitioning to New Computing Paradigms
Mobile Authentication
Mobile Devices

• What are some other key security and privacy challenges for mobile devices?
 – Tracking for advertising
 – Tracking using MAC address
 – Tracking using accelerometer
 – Lack of desktop-based tools
 – Stealing telephone numbers by showing up at retail stores
Mobile Devices

- Stingrays (cell site simulator)
The Legal System

• Riley v. California (SCOTUS 2014)
 – Unanimous ruling that warrantless search of a phone during an arrest is unconstitutional

• U.S. v. Jones (SCOTUS 2012)
 – 4th Amendment requires a warrant for GPS tracking of a subject’s car

• Can passwords be compelled? (5th Amendment)
 – This is being debated!
Self-Driving Cars
Self-Driving Cars
Internet of Things
What is the IoT?
What is the IoT?
What is the IoT?
Security Issues in Homes

- Sharing data
 - Many users
 - Many devices
 - Sensitive data

- Access to networks (e.g., wifi)

- Device pairing
Considerations in the Home

• Home as “castle”
• Occupants with social relationships
• Visitors; guests
• Surveillance
• Patching devices
• Side channels
Intruders vs. Intrusiveness

Qualitative Coding

• Many different approaches
• Key goal: capture themes in data
• Often, but not always, develop codebook containing themes observed
• For robustness, another person follows the codebook and independently codes data
 – Agreement metrics include Cohen’s Kappa
Safety-critical devices
Cars

https://www.youtube.com/watch?v=oqe6S6m73Zw
https://www.youtube.com/watch?v=3jstaBeXgAs
Meta-issues with car privacy/security

• Why are our cars run by computers?
• Why are we connecting our cars to the Internet?
 – Rich media content
 – Real-time traffic and safety info
 – OTA updates
 – Self-driving cars
 – (Surveillance)
• Are privacy/security issues the same?
Meta-issues with privacy/security

• Let’s answer the same questions for medical devices
Implantable Medical Devices (IMD)

- Embedded computers
- 350K Pacemakers & 173K Cardiac Defibrillators in 2006
Operational Requirements

• Possible goals
 – Collect information (diagnostics)
 – Provide information (medical history)
 – Perform medical function

• Disable IMD before conducting surgeries

• Access in emergency situations

• Constraints
 • Limited capacity of battery (replacement = surgery)
Risks in Medical Devices

• Vulnerabilities
 – Authentication

• Attack Vectors
 – Passive
 – Active

• Risks / threats
 – DoS
 – Changes in configuration
 – Replace medical records -- someone having a different operation
 – Injuries, death
Hacking Tests (1)

• **2008:** wireless access to a combination heart defibrillator and pacemaker (within two inches of the test gear)

• Disclose personal patient data

• Reprogram IMD to shut down and to deliver jolts of electricity that would potentially be fatal
Hacking Tests (2)
2011-2012-2013

- Hacking Insulin Pumps

2013 -- Black Hat /Defcon:

- “Implantable medical devices: hacking humans”
 - At 30 feet by compromising their pacemaker
 - Transmitter to scan for and interrogate individual medical implants
 - Security techniques for manufacturers

-- ioactive.com
Defense Approaches

• How do we achieve resistance to attacks?
 – What are the classes of attacks?

• What can go wrong?

• How do we balance utility and security/privacy?
Authentication Methods

• Passwords: how to make them available?
 – Tattooed passwords (visible, UV visible)
 – Bracelet

• Biometrics (face recognition)

• Smart Cards

• Touch-to-access policy

• Key-based systems

• Shields
 – Necklace
 – Computational wristband

-- Figures from Denning et al.
IMD Shield

• Proxy (messages exchanges)
• Authentication + encryption (channel)
IMD Shield - Implementation

• Jammer design (full duplex radio)

- S. Gollakota et al. MIT
Wristbands / Alert Bracelets

- Safety in emergencies
- Security & Privacy under adversarial conditions
- Battery life
Wristbands / Alert Bracelets

- Protection is granted while wearing the bracelet.
- Remove to gain access to the IMD
- Inform patients about malicious actions – But not preventive
- Authentication + symmetric encryption
- Disadvantages
 - Relies on the patient wearing the bracelet
 - Reactive
 - Cognitive effects on patients

--Denning et al.
Usability Considerations

• Hospitals not having correct equipment
• Visual indicator of patients condition (something is wrong). Personal dignity.
• Carrying one more device
• Aesthetics
 – Wristbands (especially). “Mockups are unaesthetic”
 – Tattoos
• Mental and physical inconvenience
• Cultural and historical associations
Electronic Medical Records

• Why do we want *electronic* medical records?
• What are privacy/security concerns about electronic medical records?
• How do we mitigate those concerns?