12. Web Security & Privacy

Blase Ur and Mainack Mondal
May 2nd, 2018
CMSC 23210 / 33210
Today’s class

• Trust on the web
 – SSL notifications
• Online tracking
 – Privacy tools
Trust on the web
Overview

• Secure Sockets Layer (SSL) and its successor, Transport Layer Security (TLS) enable secure communication

• Frequently encountered with web browsing (HTTPS) and more behind the scenes in app, VOIP, etc.
What we want to defend against

• People snooping on our communications
 – The contents of what we’re sending
 – Session tokens (see, e.g., Firesheep)

• Man-in-the-middle attacks
 – We want to authenticate that we are talking to the right site, not an imposter
 – Use certificates inside a public-key infrastructure
How we could obtain trust

• Web of trust
 – People you already trust introduce you to people they trust
 – Can get complicated, doesn’t scale well
 – Infrequently seen in practice

• Public-Key Infrastructure (PKI)
 – Certificates are issued by certificate authorities that bind cryptographic keys to identities
Public-Key Infrastructure

• Binding of keys to identities
What does SSL look like to users?

• Compare, e.g., the following:
 – https://www.google.com (normal certificate)
 – Go to Google images and then click on an image and see what happens (mixed content)
 – https://www.thawte.com (EV certificate)
What does SSL look like to users?

<table>
<thead>
<tr>
<th>Browser</th>
<th>HTTPS</th>
<th>HTTPS minor error</th>
<th>HTTPS major error</th>
<th>HTTP</th>
<th>EV</th>
<th>Malware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrome 48 And</td>
<td>🗝️ https://example.com</td>
<td>🗝️ mixed.badssl.c</td>
<td>🗝️ mixed.badssl.c</td>
<td>🟢 Symantec Co</td>
<td>🟢 https://spac</td>
<td></td>
</tr>
<tr>
<td>Opera Mini 14 And</td>
<td>🗝️ https://example.com</td>
<td>🗝️ mixed.badssl.c</td>
<td>🗝️ mixed.badssl.c</td>
<td>🟢 Symantec Co</td>
<td>🟢 Unavailable</td>
<td></td>
</tr>
<tr>
<td>UC Mini 10 And</td>
<td>🗝️ Example Do.</td>
<td>🗝️ Mixed badssl</td>
<td>🗝️ mixed.badssl</td>
<td>🟢 Symantec Co</td>
<td>🟢 Blocked</td>
<td></td>
</tr>
<tr>
<td>UC Browser 2 iOS</td>
<td>🗝️ Example Do.</td>
<td>🗝️ mixed.badssl</td>
<td>🗝️ mixed.badssl</td>
<td>🟢 Symantec Co</td>
<td>🟢 Unavailable</td>
<td></td>
</tr>
<tr>
<td>Safari 9 iOS</td>
<td>🗝️ example.com</td>
<td>🗝️ mixed.badssl</td>
<td>🗝️ mixed.badssl</td>
<td>🟢 Symantec Co</td>
<td>🟢 Unavailable</td>
<td></td>
</tr>
</tbody>
</table>

(From Felt et al. SOUPS 2016)
How does PKI look to browsers?

• Hundreds of trusted certificate authorities
 – Certificate authorities (CAs) sign the certificates binding identities to keys
 – See, e.g., Firefox’s advanced settings
How does PKI look to site admins?

• Apply for a certificate
 – Validation process
 – Certificate authorities (CAs) delegate trust ("chain of trust")
 – CAs sell you a certificate
Issues with SSL/TLS/PKIs

• Implementation issues
• Communicating to users what is happening
• Compromised Certificate Authorities
• Man-in-the-middle attacks
 – Downgrade/dumbing-down attacks
 – Addition of “rogue” certificates
• Revocation
• Timing attacks and other side channels
One famous implementation issue

• OpenSSL bug
 – Heartbleed (CVE-2014-0160)
 – TLS heartbeat extension misses a bounds check and thus lets an attacker “read” memory
Compromised CAs

• Comodo and Diginotar both suffered breaches in 2011 that let attackers issue rogue certificates

• What about untrustworthy CAs?
 – Compelled certificate creation attacks (see, e.g., Soghoian and Stamm FC ’11)
Man-in-the-middle attacks (MITM)

• Effectively, many corporations perform MITM attacks by adding certificates to users’ computers and presenting “fake” certificates to users.

• A man in the middle can also tell you a site doesn’t support SSL/TLS (downgrade) or any strong ciphers (dumbing down)
 – Why does this create a huge problem?
 – Why is this hard to deal with?
Important question 1

• How do you know if a site supports HTTPS?
 – EFF’s HTTPS Everywhere
 – HTTP Strict Transport Security (HSTS)
 – In both cases, how do you bootstrap/maintain?
Important question 2

• How do you know you have the right certificate for a site?
 – Certificate transparency
 – Public key pinning
 – Perspectives (originally a CMU project)
How do you know a cert is valid?

• Certificates can be revoked in case of a compromise

• Certificate Revocation Lists (CRLs) were used, but they got really large
 – Incremental updates were better

• Online Certificate Status Protocol (OCSP)
 – How does this impact privacy?

• OCSP Stapling
Self-signed certificates

• What happens if someone signs their own certificate and chooses not to use the PKI infrastructure?
 – You get a warning!
Warnings

This applet was signed by "Unlimi-Tech Software Inc.," and authenticated by "Thawte Consulting cc". Do you trust this certificate?

Click Trust to run this applet and allow it unrestricted access to your computer. Click Don't Trust to run this applet with standard Java restrictions.

Show Certificate Don't Trust Trust
The server's certificate chain is incomplete, and the signer(s) are not registered. Accept?

Server name:

grey-dev.ece.cmu.edu
Certificate errors:
The certificate for "grey-dev.ece.cmu.edu" is signed by the unknown Certificate Authority "grey-dev.ece.cmu.edu". It is not possible to verify that this is a valid certificate.

Certificate summary

Holder: grey-dev.ece.cmu.edu

Issuer: grey-dev.ece.cmu.edu

Expires: 02/25/2019 02:38:00 PM GMT

Encryption protocol

256 bit AES (DHE_RSA/SHA)

☐ Remember my choice for this certificate
Opera

![Security Issue]

Server certificate chain

- grey-dev.ece.cmu.edu

Details
Opera

Security Issue

Server certificate chain

grey-dev.ece.cmu.edu
Certificate Name
Issuer
Certificate version
Serial number
Not valid before
Not valid after

Details
Chromium

The site's security certificate is not trusted!

You attempted to reach grey-dev.ece.cmu.edu, but the server presented a certificate issued by an entity that is not trusted by your computer's operating system. This may mean that the server has generated its own security credentials, which Chromium cannot rely on for identity information, or an attacker may be trying to intercept your communications.

You should not proceed, especially if you have never seen this warning before for this site.

Proceed anyway Back to safety

Help me understand
The site's security certificate is not trusted.

You attempted to reach grey-dev.ece.cmu.edu, but the server presented a certificate issued by an entity that
is not trusted by your computer's operating system. This may mean that the server has generated its own
security credentials, which Chromium cannot rely on for identity information, or an attacker may be trying to
intercept your communications.

You should not proceed, especially if you have never seen this warning before for this site.

[Buttons: Proceed anyway, Back to safety]

▼ Help me understand

When you connect to a secure website, the server hosting that site presents your browser with something
called a "certificate" to verify its identity. This certificate contains identity information, such as the address of
the website, which is verified by a third party that your computer trusts. By checking that the address in the
certificate matches the address of the website, it is possible to verify that you are securely communicating
with the website you intended, and not a third party (such as an attacker on your network).

In this case, the certificate has not been verified by a third party that your computer trusts. Anyone can create
a certificate claiming to be whatever website they choose, which is why it must be verified by a trusted third
party. Without that verification, the identity information in the certificate is meaningless. It is therefore not
possible to verify that you are communicating with grey-dev.ece.cmu.edu instead of an attacker who
generated his own certificate claiming to be grey-dev.ece.cmu.edu. You should not proceed past this point.

If, however, you work in an organization that generates its own certificates, and you are trying to connect to an
internal website of that organization using such a certificate, you may be able to solve this problem securely.
You can import your organization's root certificate as a "root certificate", and then certificates issued or
verified by your organization will be trusted and you will not see this error next time you try to connect to an
internal website. Contact your organization's help staff for assistance in adding a new root certificate to your
computer.
This Connection is Untrusted

You have asked Firefox to connect securely to grey-dev.ece.cmu.edu, but we can't confirm that your connection is secure.

Normally, when you try to connect securely, sites will present trusted identification to prove that you are going to the right place. However, this site's identity can't be verified.

What Should I Do?

If you usually connect to this site without problems, this error could mean that someone is trying to impersonate the site, and you shouldn't continue.

Get me out of here!

- Technical Details
- I Understand the Risks
Mozilla Firefox

You have asked Firefox to connect securely to grey-dev.ece.cmu.edu, but we can't confirm that your connection is secure.

Normally, when you try to connect securely, sites will present trusted identification to prove that you are going to the right place. However, this site's identity can't be verified.

What Should I Do?

If you usually connect to this site without problems, this error could mean that someone is trying to impersonate the site, and you shouldn't continue.

Get me out of here!

Technical Details

grey-dev.ece.cmu.edu uses an invalid security certificate.

The certificate is not trusted because it is self-signed.

(Error code: sec_error_untrusted_issuer)

I Understand the Risks

If you understand what's going on, you can tell Firefox to start trusting this site's identification. Even if you trust the site, this error could mean that someone is tampering with your connection.

Don't add an exception unless you know there's a good reason why this site doesn't use trusted identification.

Add Exception...
Discuss Felt et al. 2016

• Coding process
• Scale
 – Not at all to Extremely
• Recruitment
Deploying certs more widely

• EFF’s Let’s Encrypt
 – https://letsencrypt.org/
Online tracking
Online Tracking

• First party = the site you are visiting (whose address is in the URL bar)

• Third party = other sites contacted as a result of your visit to that site

• First-party tracking (e.g., for search)
 – Consider DuckDuckGo and alternatives
Online Behavioral Advertising (OBA)
Do not track

- Proposed W3C standard
- User checks a box
- Browser sends “do not track” header to website
- Website stops “tracking”
- W3C working group trying to define what that means
Tools to stop tracking, effective?

• Browser privacy settings
 – Cookie blocking
 – P3P
 – Tracking Protection Lists
 – Do Not Track

• Browser add-ons

• Opt-out cookies

• Digital Advertising Alliance (DAA) AdChoices icon and associated opt-out pages
Existing Privacy Tools
Existing Privacy Tools
Existing Tools’ Connection Graphs
User study results

• Problematic defaults
• Poorly designed interfaces and jargon
• Feedback
• Misconceptions about opt-out tools
• Users unable to make meaningful decisions on a per-company basis

Do people understand OBA + tools?

- Opinions about OBA mixed – both useful and creepy
- Participants did not understand OBA technologies
- Some of the worst fears based on misconceptions
- Participants did not know how to effectively exercise choice

Browser fingerprinting

• Use features of the browser that are relatively unique to your machine
 – Fonts
 – GPU model anti-aliasing (Canvas fingerprinting)
 – User-agent string
 – *(Often not)* IP address *(Why not?)*
Browser fingerprinting

- https://panopticlick.eff.org/