
1

18. Usable Security for
Developers

Blase Ur and Mainack Mondal

May 30th, 2018

CMSC 23210 / 33210

2

Today’s class

•  Making security usable for developers

– Motivation

– Sources of security advice

– Crypto APIs

– Additional aspects

3

Developers Are Users, Too!

4

Security and human error

“Not long ago, [I] received an e-mail
purporting to be from [my] bank. It looked
perfectly legitimate, and asked [me] to verify
some information. [I] started to follow the
instructions, but then realized this might not
be such a good idea … [I] definitely should
have known better.”

-- former FBI Director Robert Mueller

5

Security and human error

6

Security and human error

•  John Podesta (more precisely an aide)
receives the following:

h"ps://mobile.ny0mes.com/2016/12/13/us/poli0cs/russia-hack-elec0on-dnc.html	

7

Security and human error

•  IT services writes back:

h"ps://mobile.ny0mes.com/2016/12/13/us/poli0cs/russia-hack-elec0on-dnc.html	

8

Security and human error

h"ps://mobile.ny0mes.com/2016/12/13/us/poli0cs/russia-hack-elec0on-dnc.html	

9

Why	are	users	
stupid	or	lazy?	 How	can	we		make	

security	more	
usable?	

10

Beyond end users for more impact

End	Users	(>	1.5	billion)		
	
	

Developers	(~350,000)	
	
	

System	Designers	(Google)		

Impact	Accessibility	

Example:	Android	

11

What about software developers?

h"
ps
:/
/i.
y0
m
g.
co
m
/v
i/t
Q
m
s0
37
U
72
w
/m

ax
re
sd
ef
au
lt.
jp
g	

h"
p:
//
w
w
w
.s
la
te
.c
om

/c
on

te
nt
/d
am

/s
la
te
/a
r0
cl
es
/t
ec
hn

ol
og
y/
fu
tu
re
_t
en

se
/

20
16
/0
6/
16
06
10
_F
T_
Ba

rb
ie
-p
ro
m
o.
jp
g.
CR

O
P.
cq
5d

am
_w

eb
_1
28
0_
12
80
_j
pe

g.
jp
g	

Developers	are	experts,	
right?	

Or	not.	

12

Why are
developers

stupid or lazy? How can we
make secure

programming
easier?

13

Lessons learned: Usec for end users

•  You are not your user

•  Security is a secondary concern

•  More is not always better

14

You are not your user

•  Confusing warnings and error messages

•  Too much security jargon

•  Don’t assume security knowledge just

because they know how to program

•  Design for usability, evaluate it explicitly

15

Security is secondary

•  No one turns on their computer to do
“security”

–  Functionality, time to market, maintainability, etc.

– May (appear to) conflict with security

•  Attention and time are limited!

•  Try: Take developer out of the loop

•  Try: Persuasive design

h"
ps
:/
/w

w
w
.s
cr
ip
ps
.o
rg
/s
pa
rk
le
-a
ss
et
s/
im

ag
es
/m

ul
0t
as
tk
in
g-
60
0x
37
5.
jp
g	

16

More is not always better

•  Too much advice is overwhelming

– Hard to roll it back

•  Can’t just keep asking users (developers)
to do and remember more stuff

h"
p:
//
bl
og
s.
ba
by
ce
nt
er
.c
om

/w
p-
co
nt
en

t/
up

lo
ad
s/
20
11
/0
9/
to
o-
m
uc
h-
su
ga
r.j
pg
	

h"
ps
:/
/r
ps
ea
w
rig

ht
.fi
le
s.
w
or
dp

re
ss
.c
om

/2
01
3/
10
/t
oo

-m
uc
h-
in
fo
.p
ng
	

17

YOU GET WHERE YOU’RE LOOKING FOR 
(IEEE S&P 2016) 

18

Has this happened to you?

19

That doesn’t seem right ….

•  Answer suggests to trust all certs

– Many real apps [Fahl+ 2012]

•  Some interviewees: pasted from internet

20

Stack Overflow considered insecure

•  “Everyone knows” copy-paste from the
internet is bad for security

– Particularly for “amateur” app devs?

•  Can we measure this empirically?

•  How does it contrast with official docs?

•  What do real devs do?

21

Online developer survey

•  Sent 50k invites, collected from Play

– 295 valid responses

•  Strategy for help with security/permissions

•  General use of programming resources

22

0! 25! 50! 75! 100!

Books	

Official	Android	docs	

Search	engines	

Stack	Overflow	

EncrypAon	

HTTPS	

Permissions	

General	

Percent	of	Respondents	

69%	Stack	overflow,	62%	search	engines,	27.5%	official	

Where	do	you	look	up	…	

23

Next, a lab study

•  Complete four short programming tasks

– Designed to have secure/insecure solutions

•  Resources constrained by condition:

– Official docs, Stack Overflow, book, free choice

•  Exit interview

•  Not primed for security or privacy!

24

Skeleton app, emulator

25

Task 1: Secure networking

•  Convert HTTP to HTTPS

–  In presence of X.509 cert error

•  Sample secure solution:

– Accept only this cert

•  Sample insecure solution:

– Accept all certs

h"p://5zin.com/cer0ficate-of-authen0city-template.html	

26

Task 2: Inter-component comms

•  Given a service, limit access to only apps
from same developer

•  Sample secure solution:

– Define a “signature” permission

•  Sample insecure solution:

– Export publicly

27

Task 3: Secure storage

•  Store user ID and password locally

•  Sample secure solution:

– Private shared preference

•  Sample insecure solution:

– Public on SD card

h"p://www.routercheck.com/administrator-password/	

28

Task 4: Least permissions

•  Dial a customer-support phone number

•  Sample secure solution:

– Dial but don’t call

•  Sample insecure solution:

– Call (extra permission)

h"p://wizwas.com/index.php/	
2009/11/02/the-door-to-yesterday-6/	

29

Evaluation

•  Correctness: Does it compile and work?

•  Security: If it works, was solution secure?

– Coded manually in predefined categories

•  Self-reported sentiment

– Security thinking

– Correctness and usefulness of resources

30

Recruitment

•  In/around 3 universities, U.S. and Germany

– Email, flyers, craigslist, developer forums

•  1+ Android course or 1+ yrs pro

•  Pass basic Android knowledge questions

31

Participants

•  54 total

•  13 or 14 per condition

•  12 U.S., 42 Germany

•  Ages 18-40; median 25

•  46 men, 8 women

•  14 professional, 40 non-professional

32

Demographics: lab vs. online

Many	similari0es;	Lab	had	more	formal	educa0on	

33

Resource was easy to use

Free	choice	was	easiest;	book	was	worst	

34

Resource was correct

•  Books, official docs considered most
correct

Books,	official	docs	considered	most	correct	

35

Security thinking

•  Observed via think-aloud:

– 16% thought about it

– 5% said they ignored it for study / time

•  Self-reported: 60% thought about it

•  No significant difference in conditions

36

Functional correctness

•  SO (67%) and Book (66%) performed best

•  Official (40%) performed worst

–  Significantly worse than SO

37

Functionality by task

•  Easiest: Least permissions (87%)

•  Hardest: Secure networking (33.3%)

38

But what about security?

Percent	of	funcAonal	parAcipants	

SO	worst	(51%),	Official	best	(86%)	(significant)	

39

Security by task

•  Storage: 100% of functional solutions secure

•  Networking: Only 39%

Percent	of	funcAonal	parAcipants	

40

Professionals vs. students

•  More functional

•  But not significantly more secure!

41

Lookup behavior

•  Official: scrolling, clicking internal links

•  Stack Overflow: many search resets

•  Free choice:

– Everyone used official, all but one used SO

– One picked up a book!

– Results closest to SO

42

A closer look at Stack Overflow

•  Collected via browser history

•  149 unique pages, 41 relevant

•  20 with code snippets

– 7 only secure, 10 only insecure, 3 both

– 3 insecure have warnings

43

So now what?

•  If you want functional, secure code:

•  Cut off the internet, give your devs a book!

44

Real takeaways

•  Stack Overflow: quick, functional solutions

– Official docs don’t

•  But, it’s less secure than official or books

•  We need resources that integrate both!

– Add a security rating to influence upvote?

–  Integrate Q&A into official docs?

– Use SO to identify trouble spots, provide code

snippets in the official docs?

45

Comparing Crypto APIs

46

•  Developers must pick:

–  algorithm

– mode of operation

–  key size, etc.

•  Challenging, error prone (ICSE’16)

•  Alternatives claim to be more usable

–  libsodium, keyczar, cryptography.io

•  Is this really true?

Getting crypto right is hard

47

•  Short python tasks, secure/insecure solutions

–  Symmetric: key gen./storage, encrypt/decrypt

–  Asymmetric: also certification validation

•  One of 5 libraries:

–  PyCrypto, M2Crypto, cryptography.io, keyczar, PyNacl

•  Exit survey

Online developer study

48

Not	all	libs	support	all	tasks	well	

49

Skeleton code, online code editor

50

•  Correctness: Runs without errors, “works”

•  Security: Manually coded

– Predefined categories, 2 independent coders

•  Self-report

– Security thinking

– System Usability Scale (SUS)

– New API scale we designed

•  Primarily analyzed w/ multiple regression

Evaluation

51

Recruitment via Github

•  Scraped committers to 100k Python repos

•  Invited random 50k of these

•  Final, “valid” sample: 256

– 208 professionals

– 198 w/ no security background

– 1571 who consented; many dropped out

52

Many	similari0es;	Par0cipants	slightly	more	ac0ve	

Invited vs. participated

53

Functionality by library

Keyczar,	m2crypto	worst;	c&p	helps	(significant)		

54

Security (among functional)

“simplified”	libs	are	most	secure;	
asymmetric	more	secure	than	symmetric	

55

Self-reported data

•  Believed secure but weren’t: 20% of tasks!

– Not different by library

•  SUS: Nothing better than mediocre

– Most disliked: keyczar, m2crypto, asymm

– Very similar to functionality results

•  From our scale: Documentation is key!

– Keyczar: “Your documentation is bad and you

should feel bad.”

56

Participant background

•  Experience level:

– High if python is your job, or programming in

python > 5 years

– Did not matter on any metric

•  Security background:

– Almost mattered to security results

– Helps with usability reports

•  Library experience: maybe helps usability

57

Takeaways

•  Implementing crypto is (still) hard

•  Simplified APIs do promote security

– Sort of!

•  Documentation, full-featured-ness are key!

58

What else can go wrong?

59

Example from today’s readings

60

Other Developer Concerns

•  AWS (or other) access tokens

– Don’t commit them to GitHub

•  Credentials for MySQL, etc.

– Don’t leave them in web-accessible directories

(in case PHP crashes)

– Don’t let people pick them

– Don’t let them be spit out by verbose error

messages

61

Other Developer Concerns

•  Don’t keep legacy databases around

– bcrypt vs. MD5

•  Don’t allow password access for SSH

•  Don’t allow remote access to your

database

•  Don’t use outdated Javascript libraries for

your website

62

Configuring HTTPS

63

What can go wrong?

•  Hacking Team was a consulting company
that contracted with governments

•  Many operational security errors

•  Sys admin’s password: P4ssword

h"p://pastebin.com/raw/0SNSvyjJ	

