05. Phishing; Robust and Ethical Experiments

Blase Ur
April 16th, 2019
CMSC 23210 / 33210
Why John Can’t Protect His Emails

Someone has your password

Hi John

Someone just used your password to try to sign in to your Google Account john.podesta@gmail.com.

Details:
Saturday, 19 March, 8:34:30 UTC
IP Address: 134.249.139.239
Location: Ukraine

Google stopped this sign-in attempt. You should change your password immediately.

CHANGE PASSWORD
Phishing

• Phish: Fraudulent email that looks real
 – Usually try to extract credentials (e.g., password), financial information (e.g., bank account), or other private information

• Spear phish: Targeted phishing email
Why Does Phishing Work?

- How do you tell if a site is legitimate?
- How do you tell if an email is legitimate?
Legitimate or Phish?
Legitimate or Phish?
Anti-Phishing Phil / PhishGuru

How To Avoid Online Scams

Notice that the URL in your browser’s address bar has several parts.
Social phishing (Jagatic et al., 2007)

• Use social networking sites to get information for targeted phishing
 – “In the study described here we simply harvested freely available acquaintance data by crawling social network Web sites.”

• “We launched an actual (but harmless) phishing attack targeting college students aged 18–24 years old.”
Social phishing (Jagatic et al., 2007)

• Control group: message from stranger
• Experimental group: message from a friend
• Used university’s sign-on service to verify passwords phished
Ethics (Jagatic et al., 2007)

- How did they obtain consent?
- What ethical concerns are there?
 - What seemed to be done well?
 - What could have been done better?
- Who was potentially affected by the study?
- “The number of complaints made to the campus support center was also small (30 complaints, or 1.7% of the participants).”
HCI Experimental Methods
Human-Computer Interaction (HCI)

• You are not the user! You know too much!
• Think about the user throughout design
• Involve the user
What is usable?

• Intuitive / obvious
• Efficient
• Learnable
• Memorable
• Few errors
• Not annoying
• Status transparent

Image from http://www.xkcd.com
Determine use cases and goals

• What are the concrete tasks users should be able to accomplish?
 – Based on understanding of users!

• Set realistic metrics
Example: paper prototypes

• Don’t overthink. Just make it.
• Draw a frame on a piece of paper
• Sketch anything that appears on a card
• Make all menus, etc.
• Redesign based on feedback
• “Think aloud”
Iterative prototyping is crucial!

High-fidelity, “Wizard of Oz,” low-fidelity
Example: low-fidelity paper prototype

SCENARIO 1
"I want to listen to alternative music"
Example: paper prototype
Example: think aloud

• Download and install software that lets you encrypt your email
 – “Think aloud” of whatever’s on your mind
 – Give them an example

• Additional things you can ask:
 – What are you thinking now?
 – What do you expect to happen if you do X?
 – How did you decide to do that?
Research Studies and Methods
Research studies: purpose and goals

• What are you hoping to learn?
• What are your hypotheses?
 – Often listed explicitly in a paper
• What are your metrics for success?
 – More secure, quicker to use, more fun, etc.
• What are you comparing to?
• What data might be helpful?
Broad types of studies

- Descriptive study
- Relational study
- Experimental study
- Formative (initial) vs. summative (validate)
Quantitative vs. Qualitative

• Quantitative: you have numbers (timing data, ratings of awesomeness)

• Qualitative: you have non-numerical data (thoughts, opinions, types of errors)
Types of studies (1)

• What people want/think/do overall:
 – Surveys
 – Interviews
 – Focus groups

• What people want/think in context:
 – Contextual inquiry (interviews)
 – Diary study (prompt people)
 – Observations in the field
Types of studies (2)

• Expert evaluation of usability:
 – Cognitive walkthrough
 – Heuristic evaluation

• Usability test:
 – Laboratory (“think aloud”)
 – Online study
 – Log analysis
Types of studies (3)

• Controlled experiments to test causation
• Varying different conditions
 – Full-factorial design or not
 – Independent and dependent variables
• Many methods apply (e.g., surveys can be designed to test causation)
 – Role-playing studies
 – Field studies
Study designs

• Within subjects
 – Every participant tests everything
 – Crucial to randomize order! (learning effect)
 – Fewer participants

• Between subjects
 – Each participant tests 1 version of the system
 – You compare these groups
 – Groups should be similar (verify!)
 – Still randomize!